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If A and B are groups such that 4 xZ=Bx Z, then A and B are elementarily equivalent. From
this follows the existence of finitely generated torsion-free nilpotent groups which are elemen-
tarily equivalent without being isomorphic.

Since 1970, a number of papers were devoted to the investigation of non-isomor-
phic groups A, B such that AxZ=BxZ. It is fair to say that no clear algebraic
pattern emerges.

This paper is divided into two parts: In the first, and most important, part we
prove the following result, which provides a surprising connection with model
theory:

Theorem. [f A and B are groups such that AXZ=BX12, then A and B are eiemen-
tarily equivalent.

In the second part we give some examples and applications.

The definition of elementary equivalence and the results of model theory which
are used here can be found in [2]. The reader is referred to [7] for group theory.

For subsets X, Y of a group G, we denote by {X) the subgroup generated by X
and X, Y] the subgroup generated by

{l, Y] =x'y'xy|xe X, ye Y}

If X has a single element x, we write [x, Y] instead of [X, Y] and (x,Y) instead of
(XUY). We note Z(G) the center of a group G.

0022-4049,/83/%$3.00 © 1983, Elsevier Science Publishers B.V. (North-Holland)



294 F. Oger
1. Proof of the theorem

We shall prove :hat A and B are elementarily equivalent under the following
hypotheses:

- A and B are subgroups of a group G and x, y elements of G.

-(xyNA= {1}, [x,A] = {1} and (x,A)=G.

-(»NB- {1} [y,B)={1} and (y,B)=CG.

- {x) anu (V) are isomorphic to Z.

Isomorphic groups are elementarily equivalent. So, from now on, we suppose A
and B non-isomorphic.

Lemma 1. We have [G,G]|CANB; so A, B and AN B are normal subgroups of G.

Proof. Since v is obviously in the center of G, we have [G,G]=[{x, A), {x, A)] =
{4, 4]C A. Likewise, we have [G,G]CB.

Lemma 2. (1) The group {x, y) is isomorphic to Z X Z.
(ii) We have (x, N(ANB)={I}.
(i) The following groups are isomorphic to Z:

YN A4, (v, N B, x, v/ Kx, vy Y, (x, v/ (x, y)NB).

Proof. The sitbgroup M ={(a,b)e 7 xZ {.x“’_v"’eA N B} is either isomorphic to Z or
10 {0} since ((1.0)YNM = {(0,0)}. As G/A=7 and G/B =7 are torsion-free groups,
G (ANB) and (I xZ)/M are also torsion-free. So, if M is isomorphic to Z,
(. <.y M s isomorphic to Z and there is a basis {(k,/),(m,n)} of ZxZ with
(A1) e M and ((n,n)yNM = {{0,0)}. We have

(X, Yy = byl Xy,

G = (X, A) - (x"'y", xmyn’ A) — (X'"_,Vn, A)
and

G = (y, B) = (.\'kyl, Xm_,V", B) = (.\'m}’”, B)
with

(x"yHNA={1} and "y"HNB={i}.

Therefore, if M is isomorphic to 7, A and B are both isomorphic to G/{a™y"™),
contrary to our hypothesis.
So, we have

M= {{0,0)}, (v, »y=2xZ and (x, WNANB) = {1}.
SMoreover,

LY DN = 1 AY A = G/A
and

LY (K wNB) =<, vBY'B =G/B
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are both isomorphic to Z. An obvious argument about ranks of Z-modules shows
that (x, )N A and {x, y) N B are also isomorphic to Z.

Lemma3. The groups A/(ANB), Z(A)/(Z(A)NB), B/(ANB)and Z(B)/(AN Z(B))
are isomorphic to Z.

Procf. We only give the argument for Z(A4)/(Z(A)N B) siuce the other proofs are
similar. It follows from Lemma 2 that Z(A4) is not contained in B, for {x, y)NA is
contained in Z(A). Therefore, Z(4)/(Z(A)NB)=(Z{A), B)/BC G/B is isomorphic
to Z.

Lemma 4. There is ar integer p=2 such that

A/(Z(A),ANB) =B/{Z(B),ANB) = Z/pZ.

Proof. The group A/{Z(A), AN B) is cyclic since A/{(A N B) is isomorphic to Z and
finite since Z{A) is not contained in 4 N B. Moreover, we have:

A/Z(A),ANB) = G/{x,Z(A), ANBY = G/{y,Z(B), ANB)
= B/(Z(B),ANB)

since (X, Z(A)=Z(G)=(y,Z(B)). If the groups A/(Z(A),ANB) and
B/{Z(B), AN B) were trivial, it would imply

A=C{ANB,Z(A)) = (ANBYX(Z(A)/(Z(A)NB)) =(ANB)xZ
and
B=(ANB,ZB)) =(ANB)X(Z(B)/(ANZ(B))) =(ANB) X Z.

Corollary 5. Ifae A and be B are such that A={a,ANB) and B={b, ANB), we
have
(@’ , ANBY =(Z(A),ANB) and (b’,ANB)=(Z(B),ANB)

Jor the integer p of Lemma 4.

Proof. Since A/(Z(A), ANB) is isomorphic to Z/pZ, we have a’ €(Z(A),ANB)
and (@, ANBYC(Z(A), ANB). Then, {a®, ANB)=(Z(A), ANB) follows from

|A/¢a", ANBY| = |<a, ANBY/{a”, ANBY| = p = |A/KZ(A), ANB)|.

If beB is such that B=<b,ANB), we have G =(y,b,ANB) and A =
(AN{y, by, ANB) since ANB is normal in G So, we can choose ae ANy, b) such
that A=<{a, ANB).

For the sequel, we consider elements a € A and b € B such that 4 ={a, ANB) and
B =(b,ANB), and for which there are integers r,s such that ¢ =y"b*. Replacing a
by a”! if necessary, we may assurne s=0. We also consider elements ¢,de ANB,
ueZ(A) and ve Z(B) such that a” =uc and b”=vd.
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We note that a, b, », v are elements of infinite order according to Lemma 3. Each
of the clements a, b, c.d commutes with the three others.

Lemma 6. With these definitions, we have s=2.

Proof. If s=0. we have ae Z(A), contrary io Lemma 4. If s=1, there is an isomor-
phism f: A - B srch that f(a)=b and f(x)=x for each xe ANB.

Lemma 7. The integers p,s are prime to each other.

Proof. If m is a divisor of p and s, we have
ap mo_ (,\"b‘)‘" m o 'vr(p m)‘(bp)s,‘m — yr(p;’m)(vd)s,:m

= ( v’(p IPI)UG "l)dﬁ m

Since ¢ and d belong to A, y"V " " =qP"d """ belongs to Z(G)NA=Z(A).
Morcover, d* ™ belongs to ANB. So we have a” "e(Z(A),ANB) and m==F1.

Lemma 8. For each integer n=2, there are two integers g and h, with g prime (o
n, ard an element e (v, v) such that a=b*d"z.

Proof. We¢ must find g. 4 and z such that
“,rh. =g = hedh: - bg(b”ll I)hz - bgap/xv--hz-

It s sufficient 1o have s =g+ ph and z=1"v". So, we have only to find = solution
(.71 of the equation s = g + ph, with g and » prime to each other, knowing that s
and p are prime to cach other.

L et us consider two integers /, j such that n=j, with j/ prime to s and each prime
divisor of 7 being a divisor of s. As p is prime to s, it is also prime to /. Thus,
g - s+ pyis prime to ( since p and j are prime to ¢. It is also prime to j since j and
s are prime to each other. So, g is prime to n. Moreover, (g=s+,j, h=—j) is a
solution of s =g+ ph.

W are going to prove that, for any non-trivial ultrafilter U over N, 4Y and BY
are ssomorphic. Then, 4 and B will be elementarily equivalent, according to corol-
fary 41,10 of |2

Fertwo elements e G and @e 7%, we note z¢ the element of GU which admits

€z .. asarepresentative, where (Z,),. - and (a,), .~ are any representatives of
cardem G oand U If 2 commutes with z, in G, we have
(z;2)" = zvz¢ ftor any aeZt.

Phe subgroup £ - ﬂ .. n"Uof “Uis divisible (for each xe E and each ne N*,
there g ve [~ such that x - nv). A subgroup S of 7% is said to be a supplementary
ot £ atand only i SOE < {1} and (S, E) = 7%, The divisibility of E and the
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existence of a supplementary of E in ZY are classical since the groups involved are
abelian (for a more general treatment, see Proposition 5.4 and Theorem 5.3 of [6]).

Lemma 9. Let S and T be supplementaries of E in ZV. The subgroups u®=
{u®|aeE} and C={a"z|ae S and ze (ANB)Y} of AY are such that u*N C = {1},
[uf,C1={1} and (u5,Cy=AY. In the same way, vE={v*|aeE} and D=
{b°z|eeT and ze(ANB)V} are such that vEND={1}, [WE D1={1} and
(vE,Dy=BY. Any isomorphism f:C— D induces an isomorphism f’'; AY— BY
with f'(u”)=v" for each ae E and f'(x)=f(x) for each xe C.

Proof. Every element of AV is a product ¢°z with ¢eZY and ze(ANB)Y. For
each ae€ZY, there are feS and yeE such that ¢=8+y, and deE such that
y=pd. It follows that

a’z = al(a?)’z = aP(uc)’z = ula(c’z)

with d€E, BeS and ’ze(ANB)Y. Moreover, for each acE, if u®=a"% "
belongs to C, we have pae ENS and a¢=0.

To end the proof, it is encugh to observe that the maps a = u* from £~ onto u®
and o - v® from E onto vf are isomorphisms; this easily follows from the pre-
viously noted fact that the elements # and v of G are of infinite order.

Lemma 10. If S is a supplementary of E in ZY and if g€ Z" has a representative
(8 )nen SUch that g, is prime to n! for each integer n, then T =gS is a siipplemen-
tary of E in 7Y and the map S— T :q— gq is an isomorphism.

Proof. Let us consider an element ge S — {0} and a representative {(g,),en Of g in
Z™. There is an integer & =2 such that g ¢ kZ" and, therefore, {neN|q,¢kZ} e U.
For this integer k, {neN | g,9,¢kZ} contains {neN | n=k and q,¢ kZ} since g,
is prime to k for each n=k. So {neN ]g,,q,,ekl} belongs to U and gq cannat
belong to E since it does not belong to kZY.

In order to show that ZY =(E, T), we consider an eleme:t ge Z" and a represen-
tative (g,),en Of g in Z™. For each ne N, there is an integer h,€Z such that
g,h,—q,en!Z. The element heZY whidii admits (A,),c, as a representative is
such that gh—qge E. There 1s an element i€ S such that A—ie E. Then, we have
gi—-g=gh—q-—-g(h—-1i)ekE, hence the lemma.

Now, we come to the proof of AY=BY. For each ne N, we consider two in-
tegers g(n), h(n) € Z, with g(n) prime to n!, and an element z(n) € {y, v) such tha
a=b&"Md"Mz(n). The existence of g(n), A(n) and z(n) follows from Lemma 8. We
note g, & the elements of ZY and z the element of Z(GY) which admit (g(n)),c .,
(h(n)),c», and (z(n)), ey as representatives. We have a=bsd"z.

We also consider a supplementary S of E in ZY. According to Lemma 10, T=gS$
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is a supplementary o.” E in Z°. It follows from Lemma 9 that we only need to build
up an isomorphism f from

C={a*w|aeS and we(ANB)Y} to
D= {h°w|aeTand we(ANB)Y}.

We define by
fu@®w) = (az )w = (b¥d"Mw = b¥(d"w)

for cach @e S and each we (AN B)". It follows from Lemma 10 that f is bijective.
So. it suffices to show that f is an homomorphism.
For any a,a’€ S and any w, w e (4N B)Y, we have

(a”“’)(a(, "',) - an¢a~((aa', w,—l]wwf)

with f¢”.w 'Jww e(ANB)L,

fUa@"wia” wyn =(az ) ([a",w 'Tww)
and fla@"wyfa* w) = (az "Ywiaz " w’
=(az N [az Y, w  fww
=(az " ([a",w "Tww)

since 2 belongs to Z(GY), which completes the proof of the theorem.

2. Examples and applications

Fhe reader is referred to R. Hirshon's works and especially to the introduction
of |3} for the algebraic properties of non-isomorphic grcups A,B such that
Ax."=Bx.. It is well known that if 4 and B are such groups, they are infinite
and non-abelian.

Two examples are quoted in the introduction of [3]. Another one, given on pages
154-155, concerns finitely generated torsion-free nilpotent groups. According to our
theorem, this provides an example of finitely generated torsion-frce nilpotent
groups which are elementarily equivalent without being isomorphic.

Many other examples concern finitely generated groups with finite commutator
subgroups. R.B. Warfield proves in [8] that two finitely generated groups with finite
commutator subgroups A, B have the same finite images if and only if 4 xZ and
B - are isomorphic. Nen-trivial examples of that situation can be found, for
mstance, in (1, p. 249} and in |5, p. 104).

In [6], we show that two finitely generated groups with finite commutator sub-
groups A, B are clementarily equivalent if and only if they have the same finite
images, and therefore it and only if A x 7 and BXx Z are isomorphic.

he theorem of the present paper only provides a partial gereralization of this
result. As g matter of fact, two finitely generated groups A, B can ve elementarily
cqgunvalent while A4 x 7 and Bx /7 are not isomorphic.
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In order to see this, we consider an example, which was given in [4], of a finitely
generated group A such that Z(A)= {1}, A=4XxAxAand A#A X A. The elemen-
tary equivalence of A and B=A x 4 follows from Proposition 6.3.13.(ii) of [2] since
each of the two groups A, B is isomorphic to a direct factor of the other.

We have Z(A xXZ)=Z(BxZ)=Z since Z(A)=Z(B)={1}. So, any isomorphism
fiAXZ—->BXxZ would map Z(AxZ)=7Z onto Z(BxZ)=Z ard induce an iso-
morphism from A=(A xXZ)/Zto B=(BxZ)/Z. Therefore, A X Z and B x Z are rot
isomorphic.

As a conclusion, we also mention Theorem 1 of [3]: If a group C satisfies the
maximal condition for normal subgroups and if AXC=BXC, then AXZ=BXx 7.
Therefore, A and B are elementarily equivalent, according to our theorem.

On the other hand, if A and B are the two finitely genei ated groups that we intro-
duced when we considered the example of [4], we have 4 = {1} x A =B x A while {1}
and B are not elementarily equivalent.
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